skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Martinez-Urtaza, Jaime"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Newton, Hayley (Ed.)
    Climate change is having increasingly profound effects on human health, notably those associated with the occurrence, distribution, and transmission of infectious diseases. The number of disparate ecological parameters and pathogens affected by climate change are vast and expansive. Disentangling the complex relationship between these variables is critical for the development of effective countermeasures against its effects. The pathogenVibrio vulnificus, a naturally occurring aquatic bacterium that causes fulminant septicemia, represents a quintessential climate-sensitive organism. In this review, we useV.vulnificusas a model organism to elucidate the intricate network of interactions between climatic factors and pathogens, with the objective of identifying common patterns by which climate change is affecting their disease burden. Recent findings indicate that in regions native toV.vulnificusor related pathogens, climate-driven natural disasters are the chief contributors to their disease outbreaks. Concurrently, climate change is increasing the environmental suitability of areas non-endemic to their diseases, promoting a surge in their natural populations and transmission dynamics, thus elevating the risk of new outbreaks. We highlight potential risk factors and climatic drivers aggravating the threat ofV.vulnificustransmission under both scenarios and propose potential measures for mitigating its impact. By defining the mechanisms by which climate change influencesV.vulnificusdisease burden, we aim to shed light on the transmission dynamics of related disease-causing agents, thereby laying the groundwork for early warning systems and broadly applicable control measures. 
    more » « less
  2. Abstract This study delves into the genomic features of 10 Vibrio strains collected from deep-sea hydrothermal vents in the Pacific Ocean, providing insights into their evolutionary history and ecological adaptations. Through sequencing and pan-genome analysis involving 141 Vibrio species, we found that deep-sea strains exhibit larger genomes with unique gene distributions, suggesting adaptation to the vent environment. The phylogenomic reconstruction of the investigated isolates revealed the presence of 2 main clades: The first is monophyletic, consisting exclusively of Vibrio alginolyticus, while the second forms a monophyletic clade comprising both Vibrio antiquarius and Vibrio diabolicus species, which were previously isolated from deep-sea vents. All strains carry virulence and antibiotic resistance genes related to those found in human pathogenic Vibrio species which may play a wider ecological role other than host infection in these environments. In addition, functional genomic analysis identified genes potentially related to deep-sea survival and stress response, alongside candidate genes encoding for novel antimicrobial agents. Ultimately, the pan-genome we generated represents a valuable resource for future studies investigating the taxonomy, evolution, and ecology of Vibrio species. 
    more » « less
  3. Abstract The significance of large tropical lakes as environmental reservoirs of Vibrio cholerae in cholera endemic countries has yet to be established. By combining large scale plankton sampling, microbial culture and ultrasensitive molecular methods, namely Droplet Digital PCR (ddPCR) and targeted genomics, the presence of Vibrio cholerae was investigated in a 96,600 L volume of surface water collected on a 322 nautical mile (596 km) transect in Lake Tanganyika. V. cholerae was detected and identified in a large area of the lake. In contrast, toxigenic strains of V. cholerae O1 or O139 were not detected in plankton samples possibly in relation to environmental conditions of the lake ecosystem, namely very low salinity compared to marine brackish and coastal environments. This represents to our knowledge, the largest environmental study to determine the role of tropical lakes as a reservoir of V. cholerae . 
    more » « less